Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Computational Study of Rear-Facing and Forward-Facing Child Restraints

2008-04-14
2008-01-1233
A recent study of U.S. crash data has shown that children 0-23 months of age in forward-facing child restraint systems (FFCRS) are 76% more likely to be seriously injured in comparison to children in rear-facing child restraint systems (RFCRS). Motivated by the epidemiological data, seven sled tests of dummies in child seats were performed at the University of Virginia using a crash pulse similar to FMVSS 213 test conditions. The tests showed an advantage for RFCRS; however, real-world crashes include a great deal of variability among factors that may affect the relative performance of FFCRS and RFCRS. Therefore, this research developed MADYMO computational models of these tests and varied several real-world parameters. These models used ellipsoid models of Q-series child dummies and facet surface models of American- and Swedish- style convertible child restraints (CRS).
Journal Article

Development of a Biofidelic Rollover Dummy-Part II: Validation of the Kinematic Response of THOR Multi-Body and Finite Element Models Relative to Response of the Physical THOR Dummy under Laboratory Rollover Conditions

2016-04-05
2016-01-1486
While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
Journal Article

A Quantitative Safety Assessment Methodology for Safety-Critical Programmable Electronic Systems Using Fault Injection

2009-04-20
2009-01-0760
Given the increased use of programmable embedded electronic systems (PEES) in automotive applications and their vital importance, it is not only important for engineers to design PEES in such a way to meet or exceed safety requirements but also quantify how “safe” these systems are. At the University of Virginia's Center for Safety-Critical Systems, we have developed a safety quantification methodology for embedded real time safety-related systems. The goal of the safety quantification methodology is to provide a generic but rigorous and systematic way of characterizing the dependability behavior of embedded systems that is applicable to a broad range of applications from automotive to nuclear. This paper presents a quantitative safety assessment methodology for safety-critical embedded systems using fault injection (FI). This methodology has been developed, refined and applied to a number of commercial safety-grade systems in the railway, nuclear and avionics industries.
Technical Paper

Recreational Off-Highway Vehicle Safety: Countermeasures for Ejection Mitigation in Rollover

2016-04-05
2016-01-1513
Recreational Off-Highway Vehicles (ROVs), since their introduction onto the market in the late-1990s, have been related to over 300 fatalities with the majority occurring in vehicle rollover. In recent years several organizations made attempts to improve ROV safety. This paper is intended to evaluate ejection mitigation measures considered by the ROV manufacturers. Evaluated countermeasures include two types of occupant restraints (three and four point) and two structural barriers (torso bar, door with net). The Rollover protection structure (ROPS) provided by the manufacturer was attached to a Dynamic Rollover Test System (DRoTS), and a full factorial series of roll/drop/catch tests was performed. The ROV buck was equipped with two Hybrid III dummies, a 5th percentile female and a 95th percentile male. Additionally, occupant and vehicle kinematics were recorded using optoelectronic stereophotogrammetric camera system.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests

2009-11-02
2009-22-0012
Previous research has suggested that the pediatric ATD spine, developed from scaling the adult ATD spine, may not adequately represent a child's spine and thus may lead to important differences in the ATD head trajectory relative to a human. To gain further insight into this issue, the objectives of this study were, through non-injurious frontal sled tests on human volunteers, to 1) quantify the kinematic responses of the restrained child's head and spine and 2) compare pediatric kinematic responses to those of the adult. Low-speed frontal sled tests were conducted using male human volunteers (20 subjects: 6-14 years old, 10 subjects: 18-40 years old), in which the safety envelope was defined from an amusement park bumper-car impact.
Technical Paper

Finite Element Analysis of Hard and Soft Tissue Contributions to Thoracic Response: Sensitivity Analysis of Fluctuations in Boundary Conditions

2006-11-06
2006-22-0008
Thoracic trauma is the principle causative factor in 30% of road traffic deaths. Researchers have developed force-deflection corridors of the thorax for various loading conditions in order to elucidate injury mechanisms and to validate the mechanical response of ATDs and numerical human models. A corridor, rather than a single response characteristic, results from the variability inherent in biological experimentation. This response variability is caused by both intrinsic and extrinsic factors. The intrinsic factors are associated with individual differences among human subjects, e.g., the differences in material properties and in body geometry. The extrinsic sources of variability include fluctuations in the loading and supporting conditions in experimental tests.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

Analysis of Vehicle Kinematics, Injuries and Restraints in DRoTS Tests to Match Unconstrained Rollover Crashes

2016-04-05
2016-01-1518
Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
X